

Première année : mathématiques

Contrôle terminal – 2h

Tout document interdit ; calculatrice de la faculté autorisée

Ouestions de cours

Définir l'affixe d'un point dans le plan complexe.

Soient $\underline{z}(\rho, \theta)$ et $\underline{z}'(\rho', \theta')$; calculer $\underline{z} \underline{z}'$ ainsi que $\underline{z} / \underline{z}'$.

Représenter l'allure de $f(x) = \tan(x)$ pour x entre $-3\pi/2$ et $+3\pi/2$.

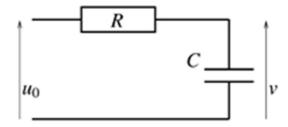
Champ magnétique

Une particule de charge q et de masse m est soumise à un champ magnétique constant \mathbf{B} (0, 0, B). Elle subit alors la force de Lorentz $\mathbf{F} = q\mathbf{v} \wedge \mathbf{B}$, et son mouvement est décrit par l'équation $m\mathbf{a} = \mathbf{F}$; \mathbf{v} désigne la vitesse de la particule et $\mathbf{a} = d\mathbf{v} / dt$ son accélération.

Ecrire en fonction des coordonnées (v_x, v_y, v_z) de v les équations correspondantes. Les résoudre. A quoi ressemble la trajectoire de la particule ?

Nombres complexes

Un courant d'intensité i traverse le circuit suivant :



Connaissant R, C et u_0 , on cherche i et v, qui sont liées par la relation i = C dv / dt.

- 1. Ecrire l'équation différentielle vérifiée par la tension v(t).
- 2. Si u_0 est une constante U_0 , déterminer v.
- 3. Si u_0 est sinusoïdale, donnée sous forme complexe par $\underline{u}_0(t) = Ae^{j\omega t}$, alors on admet que v(t) est de la forme $Be^{j(\omega t + \varphi)}$. Donner une relation entre B, φ et R, C, A, ω .
- 4. Calculer $\varphi \operatorname{si} RC\omega = 3$.

Décomposition en série de Fourier

Déterminer la série de Fourier (termes en sinus et cosinus) de la fonction 2π - périodique, définie par f(x) = x si $-\pi \le x \le \pi$.

Equation différentielle du 2ème ordre

Soit une masse m = 1 kg reliée au plafond par un ressort. Si on note z = 0 la position de la masse quand le ressort est au repos (c'est-à-dire, quand la masse n'y est pas encore accrochée), k la

constante de raideur du ressort et μ le coefficient de frottement qu'exerce l'air sur la masse (on suppose $\mu \le k$), alors la position de la masse vérifie l'équation différentielle suivante :

$$z''(t) + 2\mu z'(t) + kz(t) = -g,$$

avec g l'accélération locale de la pesanteur.

- 1. Trouver une solution particulière constante. Interpréter physiquement le résultat.
- 2. Trouver la solution telle que z(0) = 0 et z'(0) = 0. Interpréter physiquement le résultat.